Development of a microfluidics-based intracochlear drug delivery device.
نویسندگان
چکیده
BACKGROUND Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. METHODS We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. RESULTS We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. CONCLUSION We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases.
منابع مشابه
Microfluidics technology for drug delivery: A review.
Microfluidics is undoubtedly an influential technology that is currently revolutionizing the chemical and biological studies by replicating laboratory bench-top technology on a miniature chip-scale device. In the area of drug delivery science, microfluidics offers advantages, such as precise dosage, ideal delivery, target-precise delivery, sustainable and controlled release, multiple dosing, an...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملA microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control.
Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, that periodically infuses and then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This de...
متن کاملMathematical Analysis of Drug Release for Gastrointestinal Targeted Delivery Using β-Lactoglobulin Nanoparticle
To answer challenge of targeted and controlled drug release in oral delivery various materials were studied by different methods. In the present paper, controlled metal based drug (Pd(II) complex) release manner of β‑Lactoglobulin (β-LG) nanoparticles was investigated using mathematical drug release model in order to design and production of a new oral drug delivery system for gastrointestinal ...
متن کاملThe role of mechanical engineering in the development of nano drug delivery systems; a review
The pharmaceutical area can present some opportunities for mechanical engineers to develop a vast type of dosage forms particularly novel forms like nanoparticles. The classical education of mechanics needs some alterations to prepare appropriate education courses in this regard. In order to present some views about this issue, we collect some information around the importance of mechanical eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Audiology & neuro-otology
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2009